Video, slides available: “Advanced Research Computing at Michigan, An Overview,” Brock Palen, ARC-TS

By | General Interest, News | No Comments

Video (http://myumi.ch/aAG7x) and slides (http://myumi.ch/aV7kz) are now available from Advanced Research Computing – Technology Services (ARC-TS) Associate Director Brock Palen’s presentation “Advanced Research Computing at Michigan, An Overview.”

Palen gave the talk on June 27, 2016, outlining the resources and services available from ARC-TS as well as from off-campus resource providers.

MIDAS awards first round of challenge funding in transportation and learning analytics

By | General Interest, Happenings, News | No Comments

Four research projects — two each in transportation and learning analytics — have been awarded funding in the first round of the Michigan Institute for Data Science Challenge Initiatives program.

The projects will each receive $1.25 million dollars from MIDAS as part of the Data Science Initiative announced in fall 2015.

U-M Dearborn also will contribute $120,000 to each of the two transportation-related projects.

The goal of the multiyear MIDAS Challenge Initiatives program is to foster data science projects that have the potential to prompt new partnerships between U-M, federal research agencies and industry. The challenges are focused on four areas: transportation, learning analytics, social science and health science.

New on-campus data-science and computational research services available

By | Feature, General Interest, News | No Comments

Researchers across campus now have access to several new services to help them navigate the new tools and methodologies emerging for data-intensive and computational research.

As part of the U-M Data Science Initiative announced in fall 2015, Consulting for Statistics, Computing and Analytics Research (CSCAR) is offering new and expanded services, including guidance on:

  • Research methodology for data science.
  • Large scale data processing using high performance computing systems.
  • Optimization of code and use of Flux and other advanced computing systems.
  • Advanced data management.
  • Geospatial data analyses.
  • Exploratory analysis and data visualization.
  • Obtaining licensed data from commercial sources.
  • Scraping, aggregating and integrating data from public sources.
  • Analysis of restricted data.

“With Big Data and computational simulations playing an ever-larger role in research in a variety of fields, it’s increasingly important to provide researchers with a comprehensive ecosystem of support and services that address those methodologies,” said CSCAR Director Kerby Shedden.

As part of this significant expansion of its scope, the campuswide statistical consulting service CSCAR has been renamed Consulting for Statistics, Computing and Analytics Research. It was formerly known as the Center for Statistical Consultation and Research.

For more information, see the University Record article.