Dr. Sharon Broude Geva, Director of Advanced Research Computing at U-M, was one of four women profiled in HPCWire’s “Celebrating Women in Science” article.
Read the piece at https://www.hpcwire.com/2019/02/11/women-science-leading-the-way-in-hpc/
Dr. Sharon Broude Geva, Director of Advanced Research Computing at U-M, was one of four women profiled in HPCWire’s “Celebrating Women in Science” article.
Read the piece at https://www.hpcwire.com/2019/02/11/women-science-leading-the-way-in-hpc/
H.V. Jagadish has been appointed director of the Michigan Institute for Data Science (MIDAS), effective February 15, 2019.
Jagadish, the Bernard A. Galler Collegiate Professor of Electrical Engineering and Computer Science at the University of Michigan, was one of the initiators of an earlier concept of a data science initiative on campus. With support from all academic units and the Institute for Social Research, the Office of the Provost and Office of the Vice President for Research, MIDAS was established in 2015 as part of the university-wide Data Science Initiative to promote interdisciplinary collaboration in data science and education.
“I have a longstanding passion for data science, and I understand its importance in addressing a variety of important societal issues,” Jagadish said. “As the focal point for data science research at Michigan, I am thrilled to help lead MIDAS into its next stage and further expand our data science efforts across disciplines.”
Jagadish replaces MIDAS co-directors Brian Athey and Alfred Hero, who completed their leadership appointments in December 2018.
“Professor Jagadish is a leader in the field of data science, and over the past two decades, he has exhibited national and international leadership in this area,” said S. Jack Hu, U-M vice president for research. “His leadership will help continue the advancement of data science methodologies and the application of data science in research in all disciplines.”
MIDAS has built a cohort of 26 active core faculty members and more than 200 affiliated faculty members who span all three U-M campuses. Institute funding has catalyzed several multidisciplinary research projects in health, transportation, learning analytics, social sciences and the arts, many of which have generated significant external funding. MIDAS also plays a key role in establishing new educational opportunities, such as the graduate certificate in data science, and provides additional support for student groups, including one team that used data science to help address the Flint water crisis.
As director, Jagadish aims to expand the institute’s research focus and strengthen its partnerships with industry.
“The number of academic fields taking advantage of data science techniques and tools has been growing dramatically,” Jagadish said. “Over the next several years, MIDAS will continue to leverage the university’s strengths in data science methodologies to advance research in a wide array of fields, including the humanities and social sciences.”
Jagadish joined U-M in 1999. He previously led the Database Research Department at AT&T Labs.
His research, which focuses on information management, has resulted in more than 200 journal articles and 37 patents. Jagadish is a fellow of the Association for Computing Machinery and the American Association for the Advancement of Science, and he served nine years on the Computing Research Association board.
Beginning in January of 2019, most of CSCAR’s workshops will be offered free of charge to UM students, faculty, and staff.
CSCAR is able to do this thanks to funding from UM’s Data Science Initiative. Registration for CSCAR workshops is still required, and seats are limited.
CSCAR requests that participants please cancel their registration if they decide not to attend a workshop for which they have previously registered.
Note that a small number of workshops hosted by CSCAR but taught by non-CSCAR personnel will continue to have a fee, and fees will continue to apply for people who are not UM students, faculty or staff.
Eric Michielssen will step down from his position as Associate Vice President for Research – Advanced Research Computing on December 31, 2018, after serving in that leadership role for almost six years. Dr. Michielssen will return to his faculty role in the Department of Electrical Engineering and Computer Science in the College of Engineering.
Under his leadership, Advanced Research Computing has helped empower computational discovery through the Michigan Institute for Computational Discovery and Engineering (MICDE), the Michigan Institute for Data Science (MIDAS), Advanced Research Computing-Technology Services (ARC-TS) and Consulting for Statistics, Computing and Analytics Research (CSCAR).
In 2015, Eric helped launch the university’s $100 million Data Science initiative, which enhances opportunities for researchers across campus to tap into the enormous potential of big data. He also serves as co-director of the university’s Precision Health initiative, launched last year to harness campus-wide research aimed at finding personalized solutions to improve the health and wellness of individuals and communities.
The Office of Research will convene a group to assess the University’s current and emerging needs in the area of research computing and how best to address them.
The new Graduate Certificate in Computational Neuroscience will help bridge the gap between experimentally focused studies and quantitative modeling and analysis, giving graduate students a chance to broaden their skill sets in the diversifying field of brain science.
“The broad, practical training provided in this certificate program will help prepare both quantitatively focused and lab-based students for the increasingly cross-disciplinary job market in neuroscience,” said Victoria Booth, Professor of Mathematics and Associate Professor of Anesthesiology, who will oversee the program.
To earn the certificate, students will be required to take core computational neuroscience courses and cross-disciplinary courses outside of their home departments; participate in a specialized interdisciplinary journal club; and complete a practicum.
Cross-discplinary courses will depend on a student’s focus: students in experimental neuroscience programs will take quantitative coursework, and students in quantitative science programs such as physics, biophysics, mathematics and engineering will take neuroscience coursework.
The certificate was approved this fall, and will be jointly administered by the Neuroscience Graduate Program (NGP) and the Michigan Institute for Computational Discovery and Engineering (MICDE).
For more information, visit micde.umich.edu/comput-neuro-certificate. Enrollment is not yet open, but information sessions will be scheduled early next year. Please register for the program’s mailing list if you’re interested.
Along with the Graduate Certificate in Computational Neuroscience, U-M offers several other graduate programs aimed at training students in computational and data-intensive science, including:
The Clare Boothe Luce Program of the Henry Luce Foundation has awarded a $270,000 grant to the University of Michigan. The funding will support women PhD students through the Michigan Institute for Computational Discovery and Engineering (MICDE). The program aims to encourage women “to enter, study, graduate and teach” in science, and the funding will support women PhD students who make use of computational science in their research.
“We’re very excited to be able to promote women in scientific computing,” said Mariana Carrasco-Teja, manager of the grant and Associate Director of MICDE. “These resources generously provided by the Clare Boothe Luce program will make a huge difference in the careers of women pursuing computational science at U-M.”
For details on applying, and fellowship requirements, see the fellowship page at micde.umich.edu/academic-programs/cbl/.
The fellowships carry a $35,000 annual stipend and tuition, among other benefits. They will be awarded to students applying for PhD programs in fall 2019 in the College of Engineering, or several programs in the College of Literature, Science and the Arts (Applied and Interdisciplinary Mathematics, Applied Physics, Astronomy, Chemistry, Earth & Environmental Sciences, Mathematics, Physics, and Statistics).
The CBL program at U-M is funded by the Clare Boothe Luce Program of the Henry Luce Foundation, with additional support from the Rackham School of Graduate Studies, the College of Engineering, the College of Literature, Sciences and the Arts, and MICDE.
University of Michigan researchers and IT staff wrapped up a successful Supercomputing ‘18 (SC18) in Dallas from Nov. 11-16, 2018, taking part in a number of different aspects of the conference.
SC “Perennial” Quentin Stout, U-M professor of Electrical Engineering and Computer Science and one of only 19 people who have been to every Supercomputing conference, co-presented a tutorial titled Parallel Computing 101.
And with the recent announcement of a new HPC cluster on campus called Great Lakes, IT staff from Advanced Research Computing – Technology Services (ARC-TS) made presentations around the conference on the details of the new supercomputer.
U-M once again shared a booth with Michigan State University booth, highlighting our computational and data-intensive research as well as the comprehensive set of tools and services we provide to our researchers. Representatives from all ARC units were at the booth: ARC-TS, the Michigan Institute for Data Science (MIDAS), the Michigan Institute for Computational Discovery and Engineering (MICDE), and Consulting for Statistics, Computing and Analytics Research (CSCAR).
The booth also featured two demonstrations: one on the Open Storage Research Infrastructure or OSiRIS, the multi-institutional software-defined data storage system, and the Services Layer At The Edge (SLATE) project, both of which are supported by the NSF; the other tested conference-goers’ ability to detect “fake news” stories compared to an artificial intelligence system created by researchers supported by MIDAS.
U-M Activities
Follow ARC on Twitter at https://twitter.com/ARC_UM for updates.
New HPC resources to replace Flux and updates to Armis are coming. They will run a new scheduling system (Slurm). You will need to learn the commands in this system and update your batch files to successfully run jobs. Read on to learn the details and how to get training and adapt your files.
In anticipation of these changes, ARC-TS has created the test cluster “Beta,” which will provide a testing environment for the transition to Slurm. Slurm will be used on Great Lakes; the Armis HIPAA-aligned cluster; and a new cluster called “Lighthouse” which will succeed the Flux Operating Environment in early 2019.
Currently, Flux and Armis use the Torque (PBS) resource manager and the Moab scheduling system; when completed, Great Lakes and Lighthouse will use the Slurm scheduler and resource manager, which will enhance the performance and reliability of the new resources. Armis will transition from Torque to Slurm in early 2019.
The Beta test cluster is available to all Flux users, who can login via ssh at ‘beta.arc-ts.umich.edu’. Beta has its own /home directory, so users will need to create or transfer any files they need, via scp/sftp or Globus.
Slurm commands will be needed to submit jobs. For a comparison of Slurm and Torque commands, see our Torque to Slurm migration page. For more information, see the Beta home page.
Support staff from ARC-TS and individual academic units will conduct several in-person and online training sessions to help users become familiar with Slurm. We have been testing Slurm for several months, and believe the performance gains, user communications, and increased reliability will significantly improve the efficiency and effectiveness of the HPC environment at U-M.
The tentative time frame for replacing or transitioning current ARC-TS resources is:
The University of Michigan has selected Dell EMC as lead vendor to supply its new $4.8 million Great Lakes computing cluster, which will serve researchers across campus. Mellanox Technologies will provide networking solutions, and DDN will supply storage hardware.
Great Lakes will be available to the campus community in the first half of 2019, and over time will replace the Flux supercomputer, which serves more than 2,500 active users at U-M for research ranging from aerospace engineering simulations and molecular dynamics modeling to genomics and cell biology to machine learning and artificial intelligence.
Great Lakes will be the first cluster in the world to use the Mellanox HDR 200 gigabit per second InfiniBand networking solution, enabling faster data transfer speeds and increased application performance.
“High-performance research computing is a critical component of the rich computing ecosystem that supports the university’s core mission,” said Ravi Pendse, U-M’s vice president for information technology and chief information officer. “With Great Lakes, researchers in emerging fields like machine learning and precision health will have access to a higher level of computational power. We’re thrilled to be working with Dell EMC, Mellanox, and DDN; the end result will be improved performance, flexibility, and reliability for U-M researchers.”
“Dell EMC is thrilled to collaborate with the University of Michigan and our technology partners to bring this innovative and powerful system to such a strong community of researchers,” said Thierry Pellegrino, vice president, Dell EMC High Performance Computing. “This Great Lakes cluster will offer an exceptional boost in performance, throughput and response to reduce the time needed for U-M researches to make the next big discovery in a range of disciplines from artificial intelligence to genomics and bioscience.”
The main components of the new cluster are:
“HDR 200G InfiniBand provides the highest data speed and smart In-Network Computing acceleration engines, delivering HPC and AI applications with the best performance, scalability and efficiency,” said Gilad Shainer, vice president of marketing at Mellanox Technologies. “We are excited to collaborate with the University of Michigan, Dell EMC and DataDirect Networks, in building a leading HDR 200G InfiniBand-based supercomputer, serving the growing demands of U-M researchers.”
“DDN has a long history of working with Dell EMC and Mellanox to deliver optimized solutions for our customers. We are happy to be a part of the new Great Lakes cluster, supporting its mission of advanced research and computing. Partnering with forward-looking thought leaders as these is always enlightening and enriching,” said Dr. James Coomer, SVP Product Marketing and Benchmarks at DDN.
Great Lakes will provide significant improvement in computing performance over Flux. For example, each compute node will have more cores, higher maximum speed capabilities, and increased memory. The cluster will also have improved internet connectivity and file system performance, as well as NVIDIA Tensor GPU cores, which are very powerful for machine learning compared to prior generations of GPUs.
“Users of Great Lakes will have access to more cores, faster cores, faster memory, faster storage, and a more balanced network,” said Brock Palen, Director of Advanced Research Computing – Technology Services (ARC-TS).
The Flux cluster was created approximately 8 years ago, although many of the individual nodes have been added since then. Great Lakes represents an architectural overhaul that will result in better performance and efficiency. Based on extensive input from faculty and other stakeholders across campus, the new Great Lakes cluster will be designed to deliver similar services and capabilities as Flux, including the ability to accommodate faculty purchases of hardware, access to GPUs and large-memory nodes, and improved support for emerging uses such as machine learning and genomics.
ARC-TS will operate and maintain the cluster once it is built. Allocations of computing resources through ARC-TS include access to hundreds of software titles, as well as support and consulting from professional staff with decades of combined experience in research computing.
Updates on the progress of Great Lakes will be available at https://arc-ts.umich.edu/greatlakes/.
Advanced Research Computing – Technology Services (ARC-TS) at the University of Michigan has become the first U.S. academic institution to join the Cloud Native Computing Foundation (CNCF), a foundation that advances the development and use of cloud native applications and services. Founded in 2015, CNCF is part of the Linux Foundation.
CNCF announced ARC-TS’s membership at the KubeCon and CloudNativeCon event in Copenhagen. A video of the opening remarks by CNCF Executive Director Dan Kohn can be viewed on the event website.
“Our membership in the CNCF signals our commitment to bringing cloud computing and containers technology to researchers across campus,” said Brock Palen, Director of ARC-TS. “Kubernetes and other CNCF platforms are becoming crucial tools for advanced machine learning, pipelining, and other research methods. We also look forward to bring an academic perspective to the foundation.”
ARC-TS’s membership and participation in the group signals its adoption and commitment to cloud-native technologies and practices. Users of containers and other CNCF services will have access to experts in the field.
Membership gives the U-M research community input into in the continuing development of cloud-native applications, and within CNCF-managed and ancillary projects. U-M is the second academic institution to join the foundation, and the only one in the U.S.